基隆港測站107年10月-12月空品與噪音數據分析

一、監測站相關資料

臺灣港務股份有限公司基隆港務分公司之空氣品質監測站,分別位於監控中心(基隆港勞安處頂樓)、東十六(基隆港東16碼頭)、西二十八(基隆港西28碼頭)、基港大樓(基隆港東2碼頭),為24小時連續監測之自動監測站。各站相關資料彙整如表1,鄰近之環保署基隆測站相關資料彙整如表2。

表1 基隆港空氣品質監測站相關資料

站名	位置	鄰近主要污染源	污染物監測設備
監控中心	基隆港勞安處頂樓	港口船舶廢氣排放、交通源	$SO_2 \cdot NO_X \cdot O_3$
東十六	基隆港東16碼頭	港口船舶廢氣排放、交通源	PM ₁₀ 、風向、風速、溫 溼度及氣壓監測儀
西二十八	基隆港西28碼頭	港口船舶廢氣排放、交通源	PM _{2.5}
基港大樓	基隆港東2碼頭	港口船舶廢氣排放、交通源	PM ₁₀ \ PM _{2.5}

表2 環保署空氣品質基隆監測站相關資料

站名	位置	鄰近主要污染源	污染物監測設備
基隆站	基隆女中	交通源	SO ₂ 、CO、NO _x 、O ₃ 、 NMHC、PM ₁₀ 、PM _{2.5} 、 風向風速、溫溼度、雨 量計、手動PM _{2.5}

臺灣港務股份有限公司基隆港務分公司之噪音監測站,位於監控中心與另外5個碼頭,相關資料彙整如表3,於日間、晚間、夜間三個時段進行監測。

表3 基隆港噪音監測站相關資料

站名	位置	站名	位置
監控中心	基隆港勞安處頂樓	東九	基隆港東9碼頭
東十六	基隆港東16碼頭	西二十八	基隆港西28碼頭
東四	基隆港東4碼頭	西三十	基隆港西30碼頭

二、月均值匯整

107年10月至12月監控中心站之 NO_X 、 NO_2 、NO、 O_3 、 SO_2 月平均值彙整統計如表4;東十六站 PM_{10} 及西二十八站 $PM_{2.5}$ 月均值彙整統計如表5;第一季噪音值彙整統計如表6。

表4 基隆港空氣品質自動測站氣狀物分析儀月平均值統計表

測站/月份		污染物名稱與單位			
		二氧化氮 NO ₂	臭氧 O ₃	二氧化硫 SO ₂	
		ppb	ppb	ppb	
監	10月	13.5	33.5	4.7	
控中心	11月	16.8	23.9	3.4	
	12月	16.4	23.1	3.2	

表5 基隆港空氣品質自動測站粒狀物分析儀月平均值統計表

ter a la la company de la comp				
東十六站	西二十八站	基港大樓	基港大樓	
懸浮微粒PM10	細懸浮微粒PM2.5	懸浮微粒PM10	細懸浮微粒PM _{2.5}	
$\mu\mathrm{g/m}^3$	$\mu\mathrm{g/m}^3$	$\mu\mathrm{g/m}^3$	$\mu \mathrm{g/m}^3$	
39	20	45	15	
37	17	59	14	
36	18	54	16	
	東十六站 懸浮微粒PM ₁₀ μg/m ³ 39	東十六站 西二十八站 懸浮微粒PM ₁₀ 細懸浮微粒PM _{2.5} μg/m³ μg/m³ 39 20 37 17	東十六站 西二十八站 基港大樓 懸浮微粒PM10 細懸浮微粒PM2.5 懸浮微粒PM10 μg/m³ μg/m³ μg/m³ 39 20 45 37 17 59	

三、分析說明

以下茲就基隆港空氣品質監測站,氣狀物分析儀監測數值統計表如表6;粒 狀物分析儀監測數值統計如表7所示,「現況說明」及「逐日趨勢」分述如下:

(一) 現況說明

1.二氧化硫(SO₂)

107年10月至12月自動測站SO₂監測結果如表7所示。空氣品質標準中,二氧化硫(SO₂)小時監測值不得高於250 ppb,24小時監測值不得高100 ppb,統計期間有效測定日共計87日,該期間未有超標情形,其中日平均值最高發生在11月1日,測值為10.9 ppb;10-12月平均值為3.8 ppb。

2.二氧化氮 (NO₂)

107年10月至12月自動測站NO₂監測結果如表7所示。空氣品質標準中,二氧化氮(NO₂)小時監測值不得高於250 ppb,統計期間有效測定日共計92日,該期間未有超標情形,其中日平均值最高發生在11月4日,測值為16.8 ppb;10-12月平均值為6.4 ppb。

3.臭氧(O₃)

107年10月至12月自動測站O₃監測結果如表7所示。空氣品質標準中, 臭氧(O₃)小時監測值不得高於120 ppb,統計期間有效測定日共計92日, 該期間未有超標情形,其中日平均值最高發生在10月30日,測值為50.4 ppb;10-12月平均值為26.8ppb。

4.懸浮微粒 (PM₁₀)

107年10月至12月東十六站 PM_{10} 監測結果如表8所示。空氣品質標準中,懸浮微粒(PM_{10})24小時監測值不得高於 $125~\mu g/m^3$,統計期間有效測定日共計87日,該期間未有超標情形,其中日平均值最高發生在11月8日,測值為 $60\mu g/m^3$;10-12月平均值為 $38\mu g/m^3$ 。基港大樓站有效測定日共計87日,該期間未有超標情形,其中日平均值最高發生在11月8日,測

值為87μg/m³; 10-12月平均值為52μg/m³。

5. 細懸浮微粒 (PM_{2.5})

107年10月至12月西二十八站 $PM_{2.5}$ 監測結果如表8所示。空氣品質標準中,細懸浮微粒($PM_{2.5}$)24小時監測值不得高於35 µg/m³,統計期間西二十八站有效測定日共計92日,共計1日有超標情形,日平均值最高發生在12月3日,測值為39µg/m³;10-12月平均值為19µg/m³。基港大樓站有效測定日共計87日,無超標情形,日平均值最高發生在12月22日,測值為31µg/m³;10-12月平均值為15µg/m³。

表6 基隆港空氣品質監測站氣狀物分析儀監測統計表

測項(單位)	測站名稱	監控中心站
	10-12 月平均值	15.6
NO (nnh)	日均值最大值	31.9
NO ₂ (ppb)	發生日期	11月4日
	小時均值超標準次數	0
	10-12 月平均值	26.8
O (nnh)	日均值最大值	50.4
$O_3(ppb)$	發生日期	10月30日
	小時均值超標準次數	0
	10-12 月平均值	3.8
SO (nnh)	日均值最大值	10.9
$SO_2(ppb)$	發生日期	11月1日
	日均值超標準次數	0

表7 基隆港空氣品質監測站粒狀物分析儀監測統計表

測項(單位)	測站名稱	東十六站	基港大樓
	10-12 月平均值	38	52
$DM_{-1}(\mu_{m}/m^{3})$	日均值最大值	60	87
$PM_{10}(\mu g/m^3)$	發生日期	11月8日	11月8日
	日均值超標準次數	0	0
測項(單位)	測站名稱	西二十八站	基港大樓
	10-12 月平均值	19	15
DM (11 m /m ³)	日均值最大值	39	31
$PM_{2.5}(\mu g/m^3)$	發生日期	12月3日	12月22日
	日均值超標準次數	1	0

(二) 日均值趨勢

以基隆港監測站(簡稱K)與環保署基隆測站(簡稱E)監測日均值數值進行比對,懸浮微粒 (PM_{10}) 、細懸浮微粒 $(PM_{2.5})$ 、臭氧 (O_3) 、二氧化硫 (SO_2) 及二氧化氮 (NO_2) 監測數值趨勢分述如下:

1.懸浮微粒 (PM₁₀):

107年10月至12月東十六站、基港大樓站與環保署基隆站PM₁₀監測結果如圖1所示,三站趨勢一致。

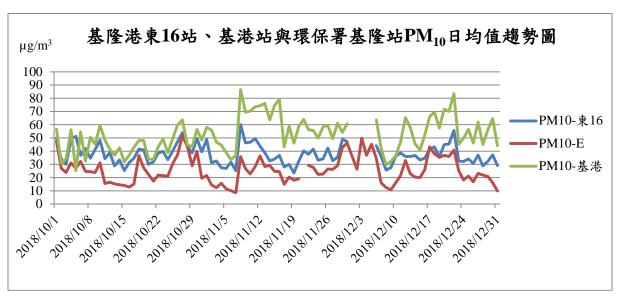


圖1 基隆港東十六站、基港大樓站與環保署基隆站懸浮微粒日均值趨勢圖

2.細懸浮微粒 (PM_{2.5}):

107年10月至12月西二十八站、基港大樓站與環保署基隆站PM_{2.5}監測結果如圖2所示,三站趨勢一致。

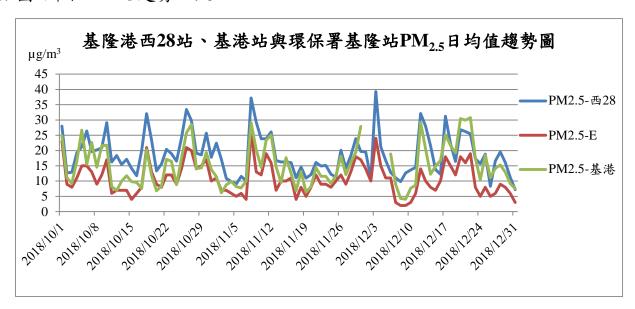


圖2 基隆港西二十八站與環保署基隆站細懸浮微粒日均值趨勢圖

3.二氧化硫(SO₂):

107年10月至12月監控中心站與環保署基隆站SO₂逐日監測結果如圖3所示。SO₂主要來源為燃煤產生之廢氣,由於兩測站環境狀況不同,因此基隆港監控中心站測值高於環保署基隆站。

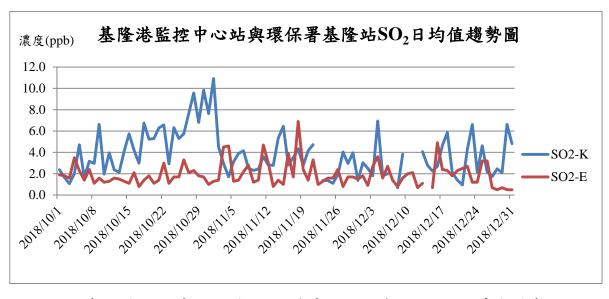


圖3 基隆港監控中心站與環保署基隆站二氧化硫逐日濃度趨勢圖

4.二氧化氮(NO₂):

107年10月至12月監控中心站與環保署基隆站二氧化氮逐日監測結果如圖4 所示,NO₂主要來源為機動車輛等交通源排放之尾氣,兩站趨勢大致相同。

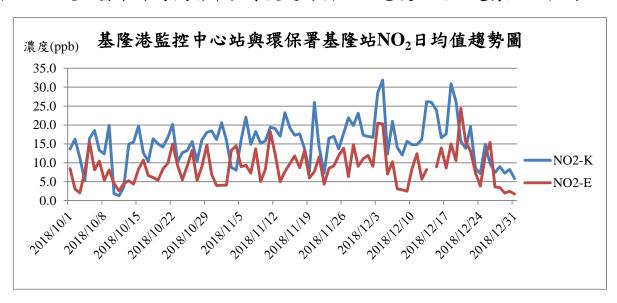


圖4 基隆港監控中心站與環保署基隆站二氧化氮逐日濃度趨勢圖

5.臭氧(O₃):

107年10月至12月監控中心站與環保署基隆站臭氧逐日監測結果如圖5所示。O₃為一連串光化反應生成之氧化物,與氮氧化物及揮發性有機物有關,當氮氧化物濃度高時消耗近地面O₃情形較明顯(NO滴定效應,NO titration effect),因此基隆港監控中心站O₃測值較環保署基隆站為低,但兩站趨勢仍有一致性。

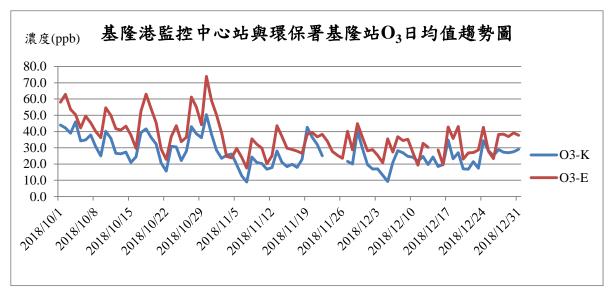


圖5 基隆港監控中心站與環保署基隆站臭氧逐日濃度趨勢圖

(三) 噪音均能音量趨勢

依據基隆市政府公告,位於中正區的基隆港區為噪音第四類管制區,環保署噪音管制標準規定工廠(場)噪音管制標準值,第四類日間80 (dB(A)),晚間70 (dB(A)),夜間65 (dB(A)),各站10-12月日間、晚間、夜間均能音量趨勢圖如圖6至圖11所示,各站不合格日數統計如表8。

表8 基隆港音量監測監測107年10-12月不合格日數統計表

測站	時段	不合格日數	合格比例
監測中心	日間	0	100%
	晚間	0	100%
	夜間	1	98.9%
	日間	0	100%
東十六	晚間	0	100%
	夜間	0	100%
	日間	0	100%
東四	晚間	0	100%
	夜間	0	100%
	日間	0	100%
東九	晚間	1	98.9%
	夜間	2	97.8%
	日間	0	100%
西二十八	晚間	0	100%
	夜間	0	100%
	日間	0	100%
西三十	晚間	11	88%
	夜間	13	85.9%

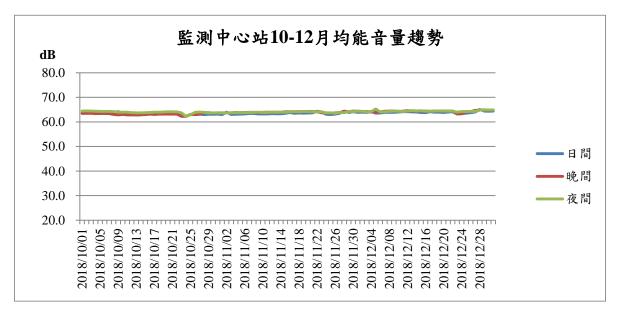


圖6 基隆港監測中心站107年10-12月噪音監測結果趨勢圖

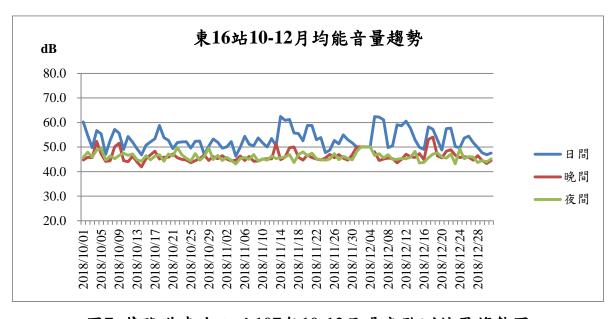


圖7 基隆港東十六站107年10-12月噪音監測結果趨勢圖

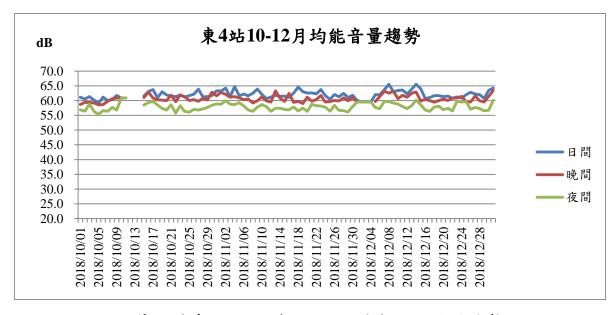


圖8 基隆港東四站107年10-12月噪音監測結果趨勢圖

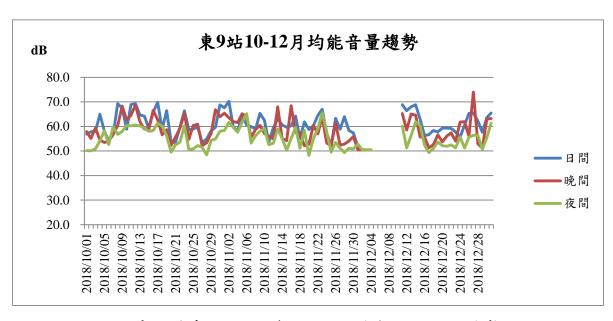


圖9 基隆港東九站107年10-12月噪音監測結果趨勢圖

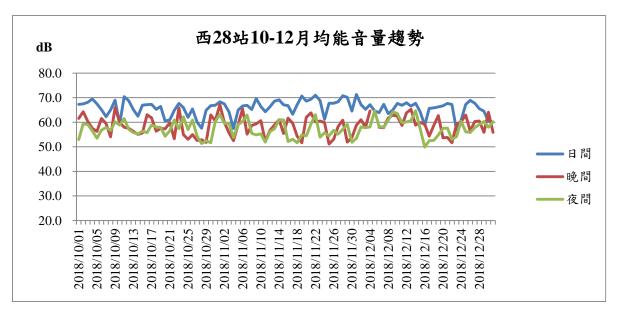


圖10 基隆港西二十八站107年10-12月噪音監測結果趨勢圖

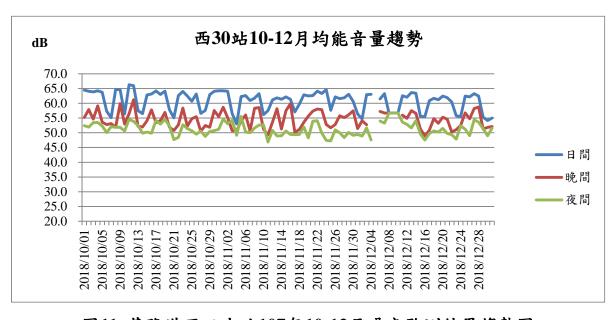


圖11 基隆港西三十站107年10-12月噪音監測結果趨勢圖